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ABSTRACT

This study consists of an investigation into the nonstationary transient response of the

Verification Test Article (VETA) when subjected to random acoustic excitation. The goal is

to assess excitation models that can be used in the design of structures and equipment when

knowledge of the structure and the excitation is limited. The VETA is an instrumented

cantilever beam that was exposed to acoustic loading during five Space Shuttle launches.

The VETA analytical structural model response is estimated using the direct averaged power

spectral density and the normalized pressure spectra methods. The estimated responses are

compared to the measured response of the VETA. These comparisons are discussed with a

focus on prediction conservatism and current design practice.

INTRODUCTION

The problem of structural vibroacoustic response of ground structures and equipment to

intense rocket acoustics is investigated. The goals of this investigation are to utilize and

assess two structural vibroacoustic response estimation methods. Those methods are to be

used in the design of structures and equipment when knowledge of both the structure and the

excitation are limited. The methods must be sufficiently conservative to provide a reasonable

factor of safety. At the same time, the methods must avoid gross over-design and false

failure predictions. Intense arguments between designers on how to approach this problem

provided the impetus for this effort. The results of this work show two load modeling

methods that are used for design applications, and the maximum and minimum prediction

bounds that can result when loading assumptions are introduced when applying the methods.



Thetwo methodsfor modelingtheloadingaredesignatedthedirectaveragedpowerspectral
density(PSD)andthenormalizedpressurespectra.Eachmethodisusedto estimatcthe
predictedmaximumandminimumvibroacousticresponseof theVerification TestArticle
(VETA). TheVETA isa structurethatwassubjectedto SpaceShuttlelaunchacousticson
launchpad39A at KennedySpaceCenter.Detailsof theVETA structureandits modaltest
resultsmaybefoundin reference1. Theanalyticalmodelof theVETA andthejoint
acceptancesarederivedprior to applyingtheresponsemethods.

ANALYTICAL MODEL

The structure is modeled as a slender, prismatic, cantilevered beam with several assumptions.

Fixed end conditions are assumed at the base. The entire length of the beam is used in the

calculations. Light damping and lack of modal coupling are assumed. This is justified from

the results of the modal test. Only the first three bending modes are calculated for use in the

response analysis. This is based on the expectation that almost the entire response will be

due to the first few bending modes.

The Euler-Bernoulli beam is used to model the VETA. The effects of shear and rotational

inertia are neglected. The beam model is depicted in figure 1. Its equation of motion is,

a2w a4w = E__J_I
Ot------T+[3_=q where 13 oA

The variables in the above equation are:

w = transverse displacement

q = distributed loading

p = mass density

t = time

E = Young's modulus

A = Area

x = axial coordinate

I = moment of inertia

The eigenvalues for the first three bending modes of the VETA along with the modal test

derived natural frequencies and dampings are presented in table 1. The mode shapes are

depicted in figure 2.

JOINT ACCEPTANCE

The excitation of a structure by distributed random pressure loads can act in some instances

with the mode, and in some cases against the mode resulting in a lower response. The

instantaneous correlation of pressures over the structure is required to describe the total effect

of the pressure loading. In addition, the mode shape of interest must be accounted for

(reference 2). The joint acceptance "is a factor which describes the proportion of [the total]

force which a particular mode of distortion can 'accept' and convert into the corresponding

generalized force" (reference 3). The word joint is used to state that the acceptance is a

function of both the trace wavelengths of the pressure loading and the wavelength of the

particular mode in question.



Note thattheVETA haslight dampingandlittle modalcouplingfor themodesin question.
Thus,thecontributionof thecrossmodaltermsto thejoint acceptanceis negligible
(reference2). In addition,thepressureloadingisuniform overtheVETA, sothecrosspower
spectrumof theuniform loadis equalto its autopowerspectrum.Taking thesefacts into
accountyieldsthefollowing resultfor thejoint acceptance.

A2 _r(f)_r(_')d?d?' _ Ajrr = _r(7)_(?')dfd?'
A A

where Jrr = joint acceptance for mode r, r = mode number, _r = mode shape, and

7,7' = position vectors.

The joint acceptances for the first three modes of the VETA are presented in table 2. The

area in table 2 was set equal to 1 for convenience.

DIRECT AVERAGE POWER SPECTRAL DENSITY METHOD

This method uses an assumed data model and the fast Fourier transform (FFF) to estimate the

maximax power spectrum of the pressure loading (reference 4). The estimated PSD is

subsequently used in conjunction with the structural modal response function to arrive at a

response PSD (reference 5). The response PSD is integrated to yield the root-mean-square

(rms) estimate of the response of a particular mode. The overall response is the summation

of the individual responses.

The model assumed for the nonstationary PSD is known as the evolutionary spectral density

(reference 6). This model requires that the PSD be a slowly varying function of time. The

model is expressed mathematically as follows.

p(t) = r(t)u(t)

where p(t)= the nonstationary time history, r(t)=a slowly varying time function, and u(t)= a

time history with a stationary PSD.

This model applies to both the input and the response, since the response of a system to a

nonstationary input will in turn be nonstationary. A certain degree of experience is required

in order to apply this model to the type ofnonstationary data generated in a space shuttle

launch. Typical pressure and strain time histories are shown in reference 1. These

demonstrate that r(t) is generally not a slowly varying function of time. A subset of the time

history is chosen in order to comply with the slowly varying requirement. The subset time

window choice is made to encompass a time slice in which the rms pressures peak. There

are two such intervals in the data. Only the first of these intervals is chosen for this analysis.

The reasoning is that the first interval is due to acoustic inputs only, and is typical of most

structures on the launch pad. The second time interval is due to impingement by deflected

plume gases and particulate. The nature of this loading is not of interest here.



The power spectrum of the generalized load, WLrr, is related to the power spectrum of the

incident pressure, Wp0,by the following relation. Here ¢0 is the circular frequency.

WLrr (01) = Wpo(o3)AZj_r(01)

The displacement response to random excitation is given by the following relation using the

above form for the generalized load.

w wr(c0) =

2 2 2.2
_ Hr(co ) Wpo(_O)A j_(_o)

2
mr

The term Hr(co) is the impulse complex frequency response of mode r, and mr is the

generalized mass for mode r. The mean square displacement is obtained from the relation,

N

=Ej'W r( )d 
r=]

The predicted analytical strains have to be computed for comparison with the measured

strains. An assumption is made as to the deflected shape of the structure. Observing the

measured strain data spectrum (figure 3) indicates that the response is dominated by the first

beam bending mode. Also, the deflected shape in the first mode is very similar to the shape

taken by a uniformly loaded cantilever beam. Therefore, the equations for the bending stress

and the elastic curve of a uniformly loaded cantilever can be recast to give the relation

between deflection and strain at any point along the beam. The final form of the equation is,

12w(L- x)/c
4x -4Lx 3+6Lzx 2

where c is the maximum fiber distance, L is the length of the beam, e is the strain, and x is as

previously defined. This equation was used to compute the strains presented in table 3 for

both the direct average PSD and the normalized pressure spectra methods.

NORMALIZED PRESSURE SPECTRA METHOD

The normalized pressure spectra method takes a different approach to estimating the load due

to an random nonstationary pressure. The method stems from the solution to the equation of

motion for a mode shape to an arbitrary pressure loading (reference 7). The equation of

motion is

Aj_
qr + 2_T0)rdlr + 03_qr : p(t)

m r

where _r = damping ratio q r = modal coordinate p(t) = pressure load time history



This equation may be solved by setting the the Aj_,/m_ ratio equal to one. The resulting

quantity is recast into the following form and plotted versus frequency. A sample plot of this

quantity is shown on figure 4.

Y(m,)=q_m_x_, Aj. )

where Y is called the load modal coordinate.

RESULTS

Both methods were used to estimate the minimum and maximum strain responses of the

VETA. The VETA was instrumented with both front and rear pressure transducers. Sample

plots of the pressure time histories may be found in reference 1. Thus, the response
contributions from each side were assumed to add to estimate the maximum, and the

response contributions were subtracted to estimate the minimum responses. This approach

guarantees that the measured response of the VETA will be bounded by the estimates. In

addition, this provides insight into how much conservatism may be introduced by assuming a

worst case contribution to the response from the incident pressure waves. The measured and

estimated strains from both methods are presented in table 3.

CONCLUSIONS

The above results encompass the measured strain gage data. The direct averaged PSD

approach was more conservative than the normalized pressures spectra approach. This will

always be the case due to the fact that the normalized pressure spectra method accounts for

the transient nature of the loading, and the direct average PSD method does not. Thus the

maximum response estimate from the normalized pressure spectra method will always be

more accurate. The normalized pressure spectra approach overpredicted the response by

-220 percent. The direct average PSD overpredicted by -270 percent. It should be noted

that this only constituted the response measurements for five launches. Therefore, it is very

likely that future strains will exceed the measured values, so these methods provide safety

margins that are within the range typically used at Kennedy Space Center for design.

In conclusion, reference 1 shows how the normalized pressure spectra approach can be used

to yield a very accurate estimate of the response when the loading is well understood. This

paper has shown the use of the normalized pressure spectra and the direct averaged PSD

methods. The methods provide reliable response estimates of a structure exposed to

nonstationary random acoustic loading when the loading is assumed to be poorly understood.

The resulting conservative response bounds were calculated, and shown to be acceptable in

the current design practice.
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Figure 1. Beam Model
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Figure 2. First Three Analytical Bending Mode Shapes
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Figure 3. Measured Strain Data Spectrum
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Figure 4. Sample Load Modal Coordinate Plot

Table 1. Analytical Versus Test Natural Frequencies

Mode Number

Natural Frequencies in Hz

Analytical Modal Test

8.94 8.84

56.0 54.3

157. 144.

Modal Test

Damping, %
O.45

0.17

0.17

Table 2. Joint Acceptances for First Three Modes (A=l)

Mode
A_IT

0.391

2 0.217

3 0.127

Table 3. Measured and Estimated Strains

Location Measured

14 inches 56

Direct Averaged PSD

Minimuml3 ]Maximum206

Normalized Pressure

Minimum Maximum

6 187
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